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NO~N~LA~~ 

dimensionless wave number in linear stability 
analysis ; 
temperature difference ratio defined as 

(‘& - T&J/(T, - T& 
amplitude, see equations (15) and (16) ; 
depth of liquid layer; 
operator defined as d/dz’ ; 
function associated with w and 0, see equations 
(15) and (16); 
gravitational acceleration; 
quantity associated with temperature disturbance, 
see equation (16) ; 
Nusselt number defined by equation (21); 
Rayleigh number defined as 

T,(Z)> 
K, T2, 

&‘I; 
Ui, 

w, 
u: 

xi, 

average pressure over x-y plane ; 
pressure variation, equation (8); 
temperature ; 
temperature at which the density of the liquid is 
maximum ; 
average temperature over x-y plane; 
lower and upper surface temperature of liquid 
layer ; 
temperature difference, T, - Tz ; 
velocity vector ; 
velocity component xJ (or z) coordinate; 
quantity associated with veiocity disturbance, 
equation (15); 
coordinates. 

2y,AATg ATd” - (i + $4AT): 
VIE 

critical Rayleigh number; 
pressure ; 

Greek letters 
K, thermal diffusivity ; 
II,, 2,. constants defined as 

1 1+3?IfAAT 3Yz 

Yl . 1 
2y,AAT 
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unit vector (0, 0, 1); 

operator defined as d/ax: + d/ax: ; 
coefficient defined by ecmation (23): 
temperature coemctenr ror aenstry expression, see 

equations (1) and (2) ; 
temperature disturbance, equation (6) ; 
kinematic viscosity ; 
density ; 
maximum density ; 
density difference due to temperature. 

1. INTRODUCTION 

IN THIS communication, an analysis on the free convection 

heat transfer of a horizontal liquid layer subject to a lower 

and upper surface temperature of T1 and T,, respectively, is 

given. The liquid possesses a maximum density at tempera- 

ture T,,, which lies within T, - TZ. Consequently, within 

the liquid layer, two distinct regions exist. The lower part of 

the liquid layer with T,,, i T < T, possesses a positive 

buoyancy force and is potentially unstable while the upper 

part is potentially stable. The overall free convection 

phenomenon represents the interaction of these two sub- 

layers. 

Previous studies of the effect of maximum density on the 

onset of convection included those of Veronis [ 141, Debler 

[2] and Tien [lo]. The following density-temperature 
relationship was used : 

A more general density-temperature relationship, i.e. 

p = pmax [l - ;r,(T - T,,J2 - >‘2 (T - LX1 (2) 

was used by the present authors [8,9] in their recent study 

of the same problem. For water, equation (1) is adequate for a 

temperature range G8”C, while equation (2) remains valid 

for a temperature up to 30°C. 

A natural extension of the stability studies is the investiga- 

tion of the free convection beyond the onset of convection. 

Although these two problems are closely related, the mathe- 

matical nature of these two problems is different. The onset 

of convection study can be made with linear stability 

analysis with infinitesimal disturbance while the free con- 

vection problem concerns disturbances with finite amplitude. 

The importance of the maximum density effect on free con- 

vection is indicated by the discrepancy between the theoreti- 

cally calculated melting rate of a large body of ice heated 

from below [l l] and the experimental observation [ 121. An 

attempt was made to reconcile the discrepancy by Yen [13] 
in an empirical way. However, his results are not applicable 

to cases without melting. 
Free convection heat transfer in a horizontal layer of 

liquid heated from below has been studied by several 

investigators [3-5, 151. Veronis [15] and Kuo [3] used 

finite terms of a double series expansion for the solution ot 

the nonlinear equation. The particular form of the double 

series used requires both bounding surfaces being free, which 

cannot be realized in an experiment. The fluid was assumed 

to have constant thermal expansion coefficient and tedious 

effort was required for the computation. 

Attempts were made to use the double series expansion 

technique for the solution of the present problem, but were 

abandoned because of the convergence difficulty. Instead, a 

more heuristic approach based on Nakagawa’s hypothesis 

[S] that the marginal state solution obtained from the linear 

stability analysis can be sued in estimating the heat transfer 

rate for finite amplitude convection. By an indirect com- 

parison of the results of this analysis with experimental data, 

the Nusselt number expression obtained in this work was 

found to hold true for the Rayleigh number up to five to ten 

times of its critical value. 

2. ANALYSIS 

Consider a horizontal layer of liquid of depth d, and 

subject to a lower and upper surface temperature of Ti and 

TZ. Furthermore, assume that this liquid possesses a maxi- 

mum density at temperature T,,, such that I’, < T,,, < T2 

or 5 c: LX < T,. The pertinent equations based on 

Boussinesq’s approximations for steady-state convection 

can be written as 

(3) 

(3 

The coordinate xj (or z) extends upwards from the lower 

surface of the liquid layer. I, is the unit vector whose com- 

ponents are (0,O. 1). 

It is assumed that with the commencement of convective 

motion, all dependent variables (velocity, temperature. 

pressure) can be expressed as sums of two quantities, an 

average value dependent upon the vertical distance. and a 

variable part which is a function of x. y. or 

T = T,(~) + e(x,) (6) 

ll, = I&) (7) 

P = P,(z) + Sp(x,) (8) 

(T) = T,(Z) (9) 

(UJ = 0 (10) 

(P> = P,(z). (11) 

The bracket quantity represents the average value over 

the horizontal plane (x1 - x2 plane). By carrying out an 

averaninn urocedure suenested bv Stuart l-71, the following _ y L 
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expressions are obtained : 

r&(z) = KTl + (ew) dz 

Similarly, from equation (13) and the definition of the 
Nusselt number, one has 

2 
d d 

- T2) + <Bw)dz ; J 1 
N 

(12) ‘% 
= - (dT,lWo . d 

(AT) 
= 1 +~~~(~).~2~~~.dz+ (21) 

0 
0 

and 

* 

z - $(@w, df)‘]. (14) 

0 0 

If the constant shape assumptions of Stuart’s are used, the 
velocity and temperature profiles can be written as: 

uj = w = BW(z) f(x, y) (15) 

The evaluation of the Nusselt number requires the know- 
ledge of W, H as well as the amplitude B. On the other hand, 
the amplitude B can be evaluated from equation (20), pro- 
vided H and Ware known. We shall assume that a reasonable 
estimate of B can be made by using the expression of H and 
Wat the marginal state, which were obtained from the linear 
stability analysis. This is the basic assumption of this 
analysis. 

By using the expressions of H and W obtained previously 
in connection with linear stability analysis, the amplitude 
function B can be evaluated from equation (20), which in 
turn can be used for calculating N, [equation (21)]. The 
final expression is found to be : 

N,.=,.fl-p-j (22) 

f 
B = Bfa.2) fk Y). (16) and 

l-=, m 

[/(“$,Q,,J( 2 C,sinmrz+)dz+]2 
m=i 

tb;, C,,,%)’ ( z C, sin mxz+12 dz+ - d( f C,,,u,,,)( 2 C,,, sin mxz+)dz+]2 
n=, 0 nl=, III=1 

(23) 

The boundary conditions requires that 

W=H=O atz=O,andd. 

B is the amplitude. Since it is an undetermined quantity, one 
can assume that : 

<p> = 1. (17) 

f is periodic along the horizontal plane and has the following 
properties : 

<.C> f <f,‘> = a? 
Substituting the assumed velocity and temperature profile 

of equations (15) and (16) into equation (12) and with the 
aid of equations (17)-j 19), one has 

1 1 

7 
I 

H W dz+ - g 
s 

[(DH)2 + a2H2] dz’ 

0 0 

1 BZ 
zE-...- 

K [J H2W’dz+-(jHWdz+j2]. (20) 

0 0 

Equation (23) is of the same form as that obtained by 
Nakagawa [S] except that the coefficient I is pot constant 
but dependent upon the parameters I, and Lz which are 
defined in nomenclature. C,,, is the coefficient of the function 
H. U, is a function of Z+. These are discussed in [9]_ 

The coefficient I was evaluated for both the rigid-rigid 
and rigid-free cases from the results of the fourth order 
polynomial approximations. The results are shown in 
Table 1. 

3. CONFIRMATION OF CALCULATED RESULTS 

WITH ~E~~~ OBSERVATIONS 

It does not appear that there has been any measurement 
on the heat transport across a horizontal liquid layer with 
the inclusion of the maximum density effect. Consequently, 
a direct check of the heat-transfer result of this work is not 
possible. Instead, its accuracy will be tested in an indirect 
manner. Yen et al. [12] measured the melting rates of a 
block of ice initially at uniform temperature (equal or less 
than the melting point) with heating at the underside. With 
melting front vs. time curve obtained from the experiment 
across which, heat is transferred into the ice block. When 
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the underside temperature is above 4”C, the physical prob- 
lem becomes the same as that considered in this work. The 
melting front vs time curve obtained from the experiment 
was found to differ from the calculated results of an earlier 
work [ 111. This discrepancy was attributed to the fact that 
Tien and Yen used the O’Toole and Silveston correlation [6], 
for the free convective heat transport. which does not con- 
sider the density inversion effect. It was, therefore, decided 
to repeat some of the calculations of [ll] using the heat- 
transfer results obtained in this work and compare it with 
the experimental data of Yen et al. [12]. 

Using the expression of N,, ofequation (22). the pertinent 
equations of the melting problem of [I l] are : 

The initial conditions are : 

s+ = 1 
s+ =y: =f: - latt+ = t: 

and 

(26) 

where S” is the dimensionless melting front, defined as 
SiS,. The meanings of other symbols can be found from [ 111. 

The melting front-time curve for a number of cases have 
been obtained numerically and the results are shown in Fig. 
1. It should be emphasized that, strictly speaking, equation 
(22) is valid in the limit Na. + N,,_. In practice, this implies 
that the heat-transfer results obtained in this work are 
correct for small values of [(iVR./NRa,,) - 11. For this 
reason, the S+ vs. t+ curves were terminated when S+ 
reaches 3, since the heat-transfer expression of equation (22) 
is unlikely to be valid beyond this point. Also included in 
Fig. 1 are the experimental data of [ 121. In this regard, the 
proper definition of S, used in [12] should be given as 

(281 

(29) 

Consequently, proper correction was made in transmitting 
the experimental data of [ 121, to Fig. 1. 

The agreement between the calculated result and experi- 
mental data as shown in Fig. 1 is reasonably good, at the 
beginning period of melting. Significant differences are 
observed as S+ increases. The comparison indicates that 
good agreement was observed for SC up to 1.7 for all cases 
and up to 22 for certain cases. Since the Rayleigh number is 
proportional to the cubic power of S [see equation (28), the 

Dimensionless t&me, f+ 

FIG. 1. Comparison of calculated melting rates with experi- 
mental work. 

Nusselt number expression ofequation (22fcan be considered 
valid for NE&?,,_ up to 5 N 10 beyond which it would not 
be applicable. 
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